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etter to the editor

omments on “Using Bayesian state-space modelling to

ssess the recovery and harvest potential of the
awaiian green sea turtle stock”
haloupka and Balazs (2007) present a surplus produc-
ion model ensemble consisting of a Bayesian state-space

odel and a stochastic simulation model, both based
n a Pella–Tomlinson type surplus production model. The
tate-space model uses Markov chain Monte Carlo (MCMC)
imulation to fit time series data for green turtle har-
est and nesting abundance trends, resulting in posterior
edian and 95% credible intervals for the parameters of the

ella–Tomlinson model and harvest management measures.
hey then use only the median values of those posterior
istributions in a stochastic Pella–Tomlinson type surplus pro-
uction simulation model to assess the population response,

n terms of nester abundance, to different harvest levels. The
tochasticity incorporated in the surplus production model
nd suggested in the plots presented in their Fig. 8 results from
ognormal process and stochastic observation error incor-
orated into the surplus production model rather than any

ncorporation of uncertainty surrounding the parameter val-
es estimated by the Bayesian state-space model.

The approach taken by Chaloupka and Balazs (2007) is
nventive in that it applies fisheries stock assessment meth-
ds to the assessment of sea turtle stocks, integrating two
atasets, pre-Endangered Species Act listing annual har-
est rates and annual nesting beach counts. This is a novel
pproach in the analysis of sea turtle population dynamics
nd will hopefully lead to similar and more refined efforts. I
elieve, though, that the authors go too far in suggesting that
his modelling approach is robust enough to be a management
ool and a basis for recommending harvest levels.

The results of their modelling efforts suggest strong evi-
ence that the Hawaiian green turtle population is close to full
ecovery, with median posterior values for the 2004 biomass
raction of carrying capacity (ratio of biomass to carrying

apacity) ranging from 73 to 90%. Projections of their stochas-
ic simulation model suggest that the population, as indexed
y annual nesting female abundances (nesters), will abruptly
evel off in 2005 (see their Fig. 8). The models suggest median
maximum annual surplus production of 18–30 tonnes and that
the current standing biomass (as of 2004) is sufficient to ini-
tiate a harvest. Chaloupka and Balazs (2007) suggest that a
limited harvest of up to10 tonnes/year could now be initiated
without negative impact on the population.

For the Bayesian state-space model of Chaloupka and
Balazs (2007), the posterior distributions of carrying capacity
(K) are essentially the same as the prior distributions, which
indicates that the data are not informative for this parameter,
a point which the authors readily admit. As the key man-
agement parameters resulting from their model depend on
K, an understanding of K in relation to the current popula-
tion biomass is critical to the application of, and management
inferences from, the surplus production model used. How-
ever, their model does not provide convincing evidence that
the population is near K. Indeed, if one looks at the plot of
nester abundance in their Fig. 1b and c (and here in Fig. 1),
the population appears to still be growing exponentially. The
spline curve in their Fig. 1c gives no suggestion of a population
approaching carrying capacity.

A standard method in Bayesian modelling is posterior
predictive checking where observed data are compared to
those generated by the model fit, and systematic discrepan-
cies between simulated and observed data suggest potential
failings of the model (Gelman et al., 2004). While the
exact application of this method can take different forms
(Gelman et al., 2004), one approach is to omit some of the
observed data, fit the model to the remaining data, and
forecast the omitted data to determine how well the model
approximates the omitted data (Gelman et al., 2004; Rivot
et al., 2004; Larssen et al., 2007). The predictive ability of
the Bayesian state-space model of Chaloupka and Balazs
(2007) is easily evaluated with this approach and I apply

it by using subsets of the nester abundance data, fitting
the Bayesian state-space model of Chaloupka and Balazs
(2007) to different time series of the nester data, 1973–1999
and 1973–1994 to test how well the model predicts trends
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Fig. 1 – Summary of the Bayesian state-space model fits for
nester data for Models A–C. Dashed lines show the 95%
credible intervals and the solid black line shows the
median values, or the median predicted trend. Circles
represent the observed nester data from 1973 to 2004, filled
circles highlight which data were used in the model fitting,
1973–2004 for Model A, 1973–1999 for Model B and
1973–1994 for Model C. The gray solid line is an exponential
curve fit to the 1973–2004 nester data and represents the
observed trend. This curve gives a fit similar to the spline

with increasing length of the time series used, from Fig. 1, the
curve used in Chaloupka and Balazs (2007, see their Fig. 2e).

in nester abundance for the time periods 2000–2004 and
1995–2004.

I repeated the Bayesian state-space model presented by
Chaloupka and Balazs (2007), using the WinBUGS code pro-
vided in their appendix. I estimated the harvest and nester
abundance data from their Fig. 1a and b using digiMatic® soft-
ware. Following Chaloupka and Balazs (2007), for the MCMC
simulations in WinBUGS, I used a 50,000 burn-in sample and

250,000 additional iterations, sampling every 25th sample for a
total of 10,000 samples. For the models presented here, conver-
gence diagnostics were performed on two separately initial-
ized chains using the Bayesian output analysis (BOA) package
2 1 2 ( 2 0 0 8 ) 545–549

for S-Plus (Smith, 2004), and the models passed convergence
and stationarity diagnostics. To demonstrate that the data
and modelling procedures are comparable to those used by
Chaloupka and Balazs (2007), I replicated their Model 1 and
achieved similar results (Table 1; compare Model 1 to Model
A). Again using the prior distributions as defined for Model 1;
I fit the Bayesian state-space model to nester abundance data
from 1973 to 1999 (deleting the last 5 years of data; Model B)
and from 1973 to 1994 (deleting the last 10 years of data; Model
C), then forecasted the nester abundance through 2004. For
Model A, I forecasted nester abundance data through 2009.

The predictive abilities of Models B and C were poor, both
suggested that the population was near K at the end of the
time series (Tables 1 and 2) and that the nester abundance
trends should rapidly stabilize, however the additional years
of nester abundance data do not support this leveling trend
(Fig. 1). Similarly, Model A, with nester abundance forecasted
through 2009, predicts rapid stabilization at the end of the
time series (as does Model 1 of Chaloupka and Balazs, 2007,
see their Fig. 8), however given the poor predictive abilities of
Models B and C, and the fact that the observed data do not
suggest a leveling trend, this is likely not a valid result (Fig. 1).
For Model B, all five of the observed data points beyond the
end of the fitted time series were above the median predicted
values and three of the five were above the 95% credible inter-
val (Fig. 1). For Model C, 9 of the 10 observed values beyond
the end of the time series were above the median predicted
values and 5 of the 10 were above the 95% credible interval
(Fig. 1).

These results are disturbing considering that Model A (or
Model 1 of Chaloupka and Balazs, 2007) is being used to recom-
mend a harvest level. For Model A, using the full time series of
nester data from 1973 to 2004, the median value of the biomass
fraction of carrying capacity in 1994 and 1999 was estimated at
52 and 64%, respectively. However, Model B, using nester data
from 1973 to 1999, estimated the median value of the biomass
fraction of carrying capacity in 1999 at 93% and Model C esti-
mated this value in 1994 at 97% (Table 1). Both of the truncated
time series suggest that the population was at carrying capac-
ity at the end of the time series but additional years of data
demonstrated that the population was in fact still well below
carrying capacity. Furthermore, while Models B and C both
suggested that the biomass at the end of their respective time
series was sufficient to initiate a harvest, with maximum sur-
plus production values similar to those reported for Model 1 in
Chaloupka and Balazs (2007), 26 and 28 tonnes, as compared to
30 tonnes (Table 1), the additional years of data used in Model A
showed that the biomass at those times, 1994 and 1999 would
not have been sufficient for harvest (Table 1). Rather, 10 years
of additional data demonstrated that the population contin-
ued to grow exponentially through 2004 (Fig. 1). If we rerun
this model in another 5–10 years, will we find the same result,
that in 2004 the population was in fact not close to its carrying
capacity and the biomass was not sufficient to initiate a har-
vest? Although Larssen et al. (2007) found increasing accuracy
answer seems likely to be yes. Based on the apparent exponen-
tial trend in the nester data (Fig. 1), this population appears
to still be recovering and may be well below its carrying
capacity.
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Table 1 – Median values of the posterior distributions achieved from the Bayesian state-space model presented by
Chaloupka and Balazs (2007)

Model 1 Model A Model B Model C

Carrying capacity (K, tonnes) 1431.0 1430.0 1317.0 1398.0
Intrinsic population growth (r) 0.054 0.055 0.054 0.055
Abundance index scaling factor (q) 0.287 0.306 0.147 0.110
Production function shape parameter (z) 2.94 2.91 2.62 2.59
Biomass in 1944 (tonnes) 329.0 446.5 1251.0 1273.0
Biomass in 1973 (tonnes) 278.8 231.5 529.5 699.7
Biomass in 1994 (tonnes) NR 637.8 1152.0 1284.0
Biomass in 1999 (tonnes NR 774.9 1133.0 1241.0
Biomass in 2004 (tonnes) 1073.0 963.6 1096.0 1213.0
Biomass fraction of K in 1944 (productivity) 0.269 0.391 1.216 1.120
Biomass fraction of K in 1973 0.212 0.183 0.426 0.540
Biomass fraction of K in 1994 NR 0.515 0.949 0.967
Biomass fraction of K in 1999 NR 0.638 0.932 0.943
Biomass fraction of K in 2004 0.834 0.810 0.916 0.936
MSP (maximum surplus production, tonnes) 30.4 29.8 26.1 28.4
Bmsp (biomass at MSP, tonnes) 897.6 887.0 800.2 845.3
Fmsp (harvestable fraction at MSP) 0.034 0.034 0.032 0.034
Fraction of harvest reported (� = beta(˛, ˇ)) 0.506 0.524 0.488 0.501
˛ hyperparameter for harvest report rate, beta pdf 51.85 53.64 48.72 51.00
ˇ hyperparameter for harvest report rate, beta pdf 50.34 47.89 51.65 50.55
Process error variance (�2) 0.008 0.008 0.019 0.018
Observation error variance (�2) 0.293 0.326 0.360 0.309

Model 1 shows the results presented by Chaloupka and Balazs (2007), their Table 2. Model A shows the results achieved using the WinBUGS
code in Chaloupka and Balazs (2007) Appendix A, the same priors as for their Model 1, and the data for harvest and nester abundance estimated
from their Fig. 1a and b for 1973–2004. Model B is the same as Model A, but using only the 1973–1999 nester abundance data, similarly Model C
uses the 1973–1994 nester abundance data. NR indicates ‘not reported’. Bold numbers are outside the range of data used to fit the model and
are predictions.

Table 2 – Posterior means and percentiles for the model and management parameters resulting from the three models
discussed in the text

Parameter Mean S.D. Percentiles

2.5% Median 97.5%

Model A
Carrying capacity (K, tonnes) 1910.0 1633.0 346.1 1430.0 6393.0
Intrinsic population growth (r) 0.057 0.015 0.032 0.055 0.089
Abundance index scaling factor (q) 0.529 0.700 0.048 0.306 2.354
Production function shape parameter (z) 2.96 1.13 1.09 2.91 4.85
Biomass in 1944 (tonnes) 1603.0 2636.0 87.3 446.5 8801.0
Biomass in 1973 (tonnes) 379.1 458.9 37.4 231.5 1602.0
Biomass in 1994 (tonnes) 1001.0 1163.0 81.3 637.8 4177.0
Biomass in 1999 (tonnes) 1178.0 1311.0 102.9 774.9 4678.0
Biomass in 2004 (tonnes) 1479.0 1654.0 138.5 963.6 6038.0
Biomass fraction of K in 1944 (productivity) 0.932 0.975 0.037 0.392 2.914
Biomass fraction of K in 1973 0.218 0.165 0.023 0.183 0.644
Biomass fraction of K in 1994 0.559 0.369 0.052 0.515 1.396
Biomass fraction of K in 1999 0.657 0.400 0.066 0.638 1.555
Biomass fraction of K in 2004 0.817 0.508 0.090 0.810 1.991
MSP (maximum surplus production, tonnes) 41.5 39.0 6.5 29.8 151.2
Bmsp (biomass at MSP, tonnes) 1184.0 1024.0 209.9 887.0 4051.0

Fmsp (harvestable fraction at MSP) 0.035 0.009 0.019 0.034 0.055
Fraction of harvest reported (� = beta(˛, ˇ)) 0.529 0.225 0.106 0.524 0.951
˛ hyperparameter for harvest report rate, beta pdf 53.03 27.51 6.30 53.64 97.82
ˇ hyperparameter for harvest report rate, beta pdf 48.74 28.65 3.19 47.89 97.07
Process error variance (�2) 0.021 0.036 0.001 0.008 0.114
Observation error variance (�2) 0.342 0.101 0.195 0.326 0.584

Model B
Carrying capacity (K, tonnes) 1741.0 1466.0 306.0 1317.0 5621.0
Intrinsic population growth (r) 0.056 0.017 0.030 0.054 0.098
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Table 2 (Continued )

Parameter Mean S.D. Percentiles

2.5% Median 97.5%

Abundance index scaling factor (q) 0.258 0.427 0.028 0.147 1.053
Production function shape parameter (z) 2.74 1.11 1.07 2.62 4.82
Biomass in 1944 (tonnes) 2100.0 2831.0 126.8 1251.0 9335.0
Biomass in 1973 (tonnes) 803.7 897.9 75.4 529.5 3247.0
Biomass in 1994 (tonnes) 1642.0 1683.0 161.6 1152.0 6177.0
Biomass in 1999 (tonnes) 1598.0 1635.0 177.5 1133.0 5848.0
Biomass fraction of K in 1944 (productivity) 1.276 0.895 0.086 1.216 3.047
Biomass fraction of K in 1973 0.466 0.253 0.069 0.426 1.023
Biomass fraction of K in 1994 0.945 0.428 0.168 0.949 1.903
Biomass fraction of K in 1999 0.922 0.390 0.191 0.932 1.751
MSP (maximum surplus production, tonnes) 36.2 34.3 5.5 26.1 125.9
Bmsp (biomass at MSP, tonnes) 1061.0 904.0 183.1 800.2 3423.0
Fmsp (harvestable fraction at MSP) 0.034 0.011 0.018 0.032 0.059
Fraction of harvest reported (� = beta(˛, ˇ)) 0.489 0.235 0.071 0.488 0.939
˛ hyperparameter for harvest report rate, beta pdf 49.53 28.55 4.36 48.72 97.35
ˇ hyperparameter for harvest report rate, beta pdf 51.26 28.41 3.69 51.65 97.87
Process error variance (�2) 0.033 0.046 0.001 0.019 0.148
Observation error variance (�2) 0.385 0.137 0.193 0.360 0.724

Model C
Carrying capacity (K, tonnes) 1832.0 1557.0 331.1 1398.0 5989.0
Intrinsic population growth (r) 0.058 0.018 0.030 0.055 0.100
Abundance index scaling factor (q) 0.174 0.214 0.021 0.110 0.715
Production function shape parameter (z) 2.73 1.11 1.08 2.59 4.82
Biomass in 1944 (tonnes) 2119.0 2624.0 138.3 1273.0 9275.0
Biomass in 1973 (tonnes) 1039.0 1083.0 104.1 699.7 3963.0
Biomass in 1994 (tonnes) 1790.0 1758.0 219.9 1284.0 6521.0
Biomass fraction of K in 1944 (productivity) 1.215 0.858 0.096 1.120 2.974
Biomass fraction of K in 1973 0.566 0.278 0.121 0.540 1.132
Biomass fraction of K in 1994 0.976 0.385 0.273 0.967 1.814
MSP (maximum surplus production, tonnes) 38.8 36.5 5.6 28.4 136.4
Bmsp (biomass at MSP, tonnes) 1113.0 955.9 197.0 845.3 3637.0
Fmsp (harvestable fraction at MSP) 0.035 0.011 0.018 0.034 0.060
Fraction of harvest reported (� = beta(˛, ˇ)) 0.504 0.228 0.085 0.501 0.947
˛ hyperparameter for harvest report rate, beta pdf 51.03 27.89 4.97 51.00 97.73
ˇ hyperparameter for harvest report rate, beta pdf 50.63 28.58 3.34 50.55 97.68
Process error variance (�2) 0.036 0.063 0.001 0.018 0.170
Observation error variance (�2) 0.332 0.129 0.153 0.309 0.650

7). Ne
1973–

ment in preparing this response. I also thank Tomo Eguchi for
Model A: Priors as reported for Model 1 of Chaloupka and Balazs (200
Model 1 of Chaloupka and Balazs (2007). Nester abundance data from
(2007). Nester abundance data from 1973–1994.

One of the benefits of using a Bayesian approach in a
stock assessment is that it demonstrates the uncertainty asso-
ciated with estimations of management parameters (Booth
and Quinn, 2006). However, Chaloupka and Balazs (2007) used
only the median values of the posterior distributions from
the Bayesian state-space model for the parameters in the
stochastic simulation model, even though the 95% credible
intervals for these parameters are quite large (Table 2). The
2.5 percentile of the 95% credible interval for maximum sur-
plus production for their Model 1 is 2.6 tonnes. How then,
based on these results, can one conclude that a harvest of
10 tonnes will have a minimal impact on the population? For
the same model, the 2.5 and 97.5 percentiles for the posterior
distribution of biomass fraction of K were 13 and 185% of K,

respectively. That the 95% credible interval shows results that
range from critically depleted to nearly double carrying capac-
ity should raise a red flag that this modelling exercise does not
provide enough information about the population to under-
ster abundance data from 1973–2004. Model B: Priors as reported for
1999. Model C: Priors as reported for Model 1 of Chaloupka and Balazs

stand its dynamics and certainly not enough information to
suggest the population can go from full protection under the
U.S. Endangered Species Act to being a harvestable resource.

I applaud the authors for taking a unique and potentially
useful approach to a stock assessment for a protected species.
However, I believe that they have drawn management conclu-
sions that are incautious and go beyond what the model and
available data reliably support.
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